

The Number *e*

Section 8.3

Investigating the Natural Base

 Copy and complete the table. Use a calculator. Round to the nearest thousandth

$\frac{n}{\left(1+\frac{1}{n}\right)^n}$	10 ¹	10 ²	10^{3}	10^{4}	10^{5}	10^{6}
$\left(1+\frac{1}{n}\right)^n$	(1+ 16)10	(17 /2)199				
$\binom{1}{n}$	2.594	2.705	2.717	2718	2.718	2.718

• The natural base, e, is irrational. It is defined as:

As *n* approaches
$$+\infty$$
, $\left(1+\frac{1}{n}\right)^n$ approaches *e*, 2.718281828459...

Simplify the expressions

$$e^3 \cdot e^4 = e^7$$

$$\bullet \frac{10e^3}{5e^2} = 2e$$

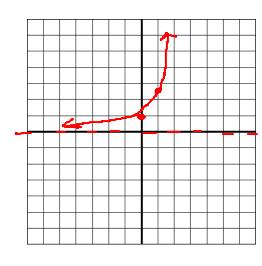
•
$$(3e^{-4x})^2 = 3^2 e^{-4x \cdot 2}$$

= $9e^{-8x} = \frac{9}{e^{8x}}$

•
$$\sqrt[3]{27e^{6x}} = 3e^{2x}$$

 $(27e^{6x})^{1/3}$
 $(27e^{6x})^{1/3}$
 $27^{1/3}e^{6x}$

Evaluating and Graphing

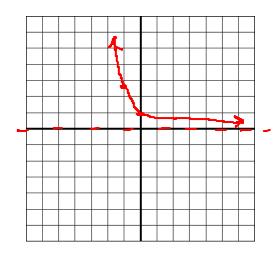

Use a calculator to evaluate the expressions:

a.)
$$e^2 = 7.389$$

b.)
$$e^{-0.06} = 0.942$$

Graph the Natural Base Functions

a.)
$$y = e^x$$

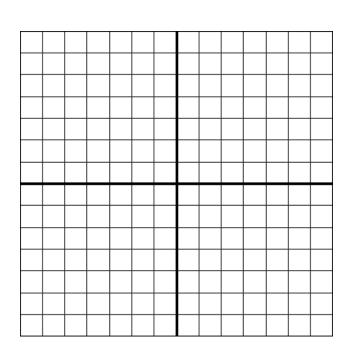


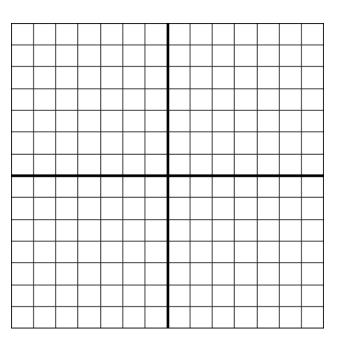
b.)
$$y = e^{-x}$$

(0,1)

(-1,2.718)

exp. decay




Graph the Natural Base Functions

$$y = 2e^{0.75x}$$

•
$$y = e^{-0.5(x-2)} + 1$$

- List Parent Graph
- Plot 2 points
- List/draw HA
- State D and R

Applications of e

Formula for Interest compounded continuously

$$A = Pe^{rt}$$

You deposit \$1000 in an account that pays 8% annual interest compounded continuously. What is the balance after years?

$$A = 1000e^{.08(1)}$$
 $A = 1083.28$

Bank Accounts

You have \$25,000 to invest into a savings account. How much more money would you have after 50 years of compounding continuously with a rate of 3.5% than if you were to invest in an account compounded daily at the same rate over the same amount of time?

Continuously
$$A = Pert$$

$$A = P(1 + \frac{1}{n})^{nt}$$

$$A = 25,000e$$

$$A = 3143,865.06$$

$$A = 3143,865.06$$

$$A = 3143,865.06$$

$$A = 3143,865.06$$

$$A = 3143,852.99$$

Using Exponential Models

Since 1972 the U.S. Fish and Wildlife Service has kept a list of endangered species in the United States. For the years 1972 – 1998, the number s of species on the list can modelled by:

$$s = 119.6e^{0.0917t}$$

where *t* is the number of years since 1972.

- a) What was the number of endangered species in 1972? (19.6 (20) endangered species)
- b) Graph the model.
- c) Use the graph to estimate when the number of endangered species reached 1000.

Textbook Practice Problems

Page 483-4

- 22 32 evens
- 49 60 all
- 61 66 matching
- 70, 73, 74 graphing (use GC)
- 76, 79, 80 apps